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Hierarchical organization of objects 
in scenes is reflected in mental 
representations of objects
Jacopo Turini 1,2* & Melissa Le‑Hoa Võ 1

The arrangement of objects in scenes follows certain rules (“Scene Grammar”), which we exploit to 
perceive and interact efficiently with our environment. We have proposed that Scene Grammar is 
hierarchically organized: scenes are divided into clusters of objects (“phrases”, e.g., the sink phrase); 
within every phrase, one object (“anchor”, e.g., the sink) holds strong predictions about identity 
and position of other objects (“local objects”, e.g., a toothbrush). To investigate if this hierarchy is 
reflected in the mental representations of objects, we collected pairwise similarity judgments for 
everyday object pictures and for the corresponding words. Similarity judgments were stronger not 
only for object pairs appearing in the same scene, but also object pairs appearing within the same 
phrase of the same scene as opposed to appearing in different phrases of the same scene. Besides, 
object pairs with the same status in the scenes (i.e., being both anchors or both local objects) were 
judged as more similar than pairs of different status. Comparing effects between pictures and words, 
we found similar, significant impact of scene hierarchy on the organization of mental representation 
of objects, independent of stimulus modality. We conclude that the hierarchical structure of visual 
environment is incorporated into abstract, domain general mental representations of the world.

Objects in our environment are not arranged randomly but usually appear in certain contexts (“semantic rules”) 
and in certain positions (“syntactic rules”), according to physical laws and typical use1. We refer to this set of rules 
of objects in scenes as “Scene Grammar” (for a recent review see2), in analogy with the linguistic grammar that 
governs words in sentences. It has been shown that Scene Grammar is exploited by our cognitive system to effi-
ciently represent objects during visual perception and to guide allocation of attention during scene perception3,4 
supporting complex behaviors like object recognition5, search6, and object interaction7.

More recently, it has been proposed that Scene Grammar could be structured according to a hierarchy8: 
a scene on the top level is divided into meaningful clusters of spatially related objects, which we refer to as 
“phrases”; in every phrase, one object holds a special status (“anchor object”), with strong predictions regarding 
both the identity and position of the other objects within the cluster (“local objects”; Fig. 1A). Anchor objects 
are proposed to be typical (i.e., frequently present) of a scene, bigger in size and rather stationary (e.g., a sink), 
while local objects tend to be smaller and more moveable (a toothbrush). The proposed role of this hierarchy 
entails that during complex behavior within a scene, like object search or interaction, we first and foremost 
process objects based on their phrasal membership within a scene.

So far, mostly the top “scene level” as organizing structure of objects has been investigated. It is believed 
that priors regarding object-to-object and object-to-scene relationships are activated after a quick extraction 
of a scene’s “gist”9,10. As a result, typically studies have manipulated the consistency between an object and its 
background scene (e.g., a priest in a church vs. a football court11), and have tried to identify which ingredients 
of a scene are sufficient to retrieve this contextual knowledge (e.g., color and texture12; orientation13; materials14; 
layout15; for a review16).

The “phrase level” has hardly received any attention thus far, but there have been attempts to disentangle 
what the role of pairs and groups of objects is in supporting object identification. For instance, co-occurrence 
(a pot and a stove) and spatial dependency (a pot on top of a stove) between objects have been also found to 
be relevant for object processing during visual search17,18 and object recognition19,20, even beyond the effect of 
background scene information21. Indeed, the complex network of object-to-object relationships seems to be 
retrieved even when objects are seen in isolation on a neutral background, as shown by the correlation between 
fMRI patterns evoked by single object pictures and a computational model that uses distributional statistics of 
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objects in scenes22. Besides, typical semantic and spatial arrangements of multiple objects are processed in a 
more efficient way both at behavioral and neural level23,24 supposedly due to a grouping mechanism that allows 
to reduce the complexity of visual input. This grouping based on meaning and spatial relationship might also be 
supportive of extraction of action affordances, which seems to play an important role in scene understanding25 
and might be the organizing principle behind the phrasal structure in man-made scenes2.

Finally, for what concerns the “object type level”, first empirical results supporting the prominent role of 
anchor objects in structuring a scene came from a study where participants were asked to arrange objects in a 
virtual environment according to their scene grammar (creating a typical arrangement of objects in scenes7): 
Anchor objects were preferentially used during initial stages of object arrangements underlining their role as 
primary building blocks of a scene. The important role of anchor objects in visual search has been further cor-
roborated by a series of eye-tracking experiments where the absence of anchor objects (e.g., the toilet being 
replaced by a washing machine) resulted in less efficient search performance as seen in faster RTs and reduced 
gaze coverage of the scene26. These results were then replicated in more ecologically valid and immersive setting 
provided by virtual reality (VR27). Participants had to search for target local objects within virtual environments 
that either displayed anchor objects or anchors replaced by gray cuboids in the same position. The presence of 
anchors had strong beneficial effects on search behavior as seen in more efficient gaze and body movements.

The goal of the current study was to investigate whether the contextual knowledge associated with mental 
representations of object is organized according to a hierarchy, where the levels of scene, phrase, and object 
type (anchor vs. local) can be distinguished. Moreover, we wanted to assess whether the organization of object 
representations is modality-specific or independent of specific modalities (e.g., verbal and non-verbal stimuli31).

To achieve these goals, we organized a set of everyday objects according to the above-mentioned hierarchical 
structure in two ways (Fig. 1B): one based on common-sense and intuition (a priori hierarchy model), and the 
other one based on the distribution of objects in a real-world image dataset28 (data-driven hierarchy model), 
both organizing objects on three levels: scene, phrases and object types. Then, we collected pairwise similarity 
ratings for the set of objects, adapting an “odd-one-out” triplet task (Fig. 1C) previously used to study perceptual 
and conceptual dimensions underlying mental representation of objects32. Finally, we compared the odd-one-out 
ratings to the hierarchy models using Representational Similarity Analysis (RSA33), which allows to estimate if 
the representational space underlying behavioural responses is structured according to the levels of our proposed 
hierarchical organization, representing pairwise similarity of both behaviour and hierarchical models in terms 
of Representational (Dis)similarity Matrices (RDMs; see Fig. 2 for the organization of individual objects in the 

Figure 1.   (A) Schema of the hierarchical structure of objects in scenes tested in the study: a scene is divided 
into clusters (phrases) and each phrase is formed by one anchor objects and several local objects (figure adapted 
from8); (B) Estimation of hierarchical measures using a priori assignment of objects to a scene, phrase and 
object type or using a datasets of annotated and segmented images from which we can extract co-occurrence 
and clustering information (image taken from the dataset28 and visualized through LabelMe29); (C) Example of 
a trial from Experiment 1 and Experiment 2 showing a triplet of objects (pictures or words), as well as the way 
we measured behavioural similarity from the response in the trial: pairs including the selected “odd-one” object 
have minimal similarity while the pair including the unselected objects has maximal similarity. Object images 
are taken from30 and are not the one used in the real experiment.
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RDMs, and Fig. 3 for RDMs of each hierarchical predictor). To estimate the simultaneous impact of different 
levels of the hierarchy and different types of hierarchy, we combined RSA with Generalized Linear Mixed-effects 
Models (GLMMs34).

Results
Ratings divided by modality were plotted in the RDM format (Fig. 4), where every cell represents the pairwise 
similarity ratings for a given pair averaged across all the triplets where the pair is present. The GLMM resulted 
to be singular, due to the random factor term (1 | participants) explaining no variance, since this was already 
explained by the other two random factors (1 | pairs) and (1 | context objects), that identify unique observations.

To evaluate potential multicollinearity in the model, we computed the variance inflation factors (VIFs) for 
each term in the model, using the check_collinearity function in R (package “performance”35). Typically, when 
VIFs are below 5, there is low correlations between predictors and the model does not need any adjustment, as 
it was in our case (VIFs and correlations among predictors are shown in detail in Supplementary Material  1).

Results from the GLMM (Fig. 5) showed a main effect of stimulus modality (β = − 0.107, SE = 0.031, z = − 3.448, 
p = 0.001), with objects pictures estimated to be more similar to each other than object words. The a priori hier-
archical structure was reflected in participants’ similarity ratings, with significant main effects of scene condition 
(β = 1.078, SE = 0.075, z = 14.474, p < 0.001), phrase condition (β = 0.270, SE = 0.128, z = 2.111, p = 0.035), and 
object type condition (β = 0.245, SE = 0.048, z = 5.106, p < 0.001), showing that objects belonging to the same 
scene/phrase/object type were considered more similar than objects belonging to different scenes/phrase/object 
types. At the same time, we also found main effects of the data-driven hierarchy predictors measuring co-occur-
rence in scene (β = 0.397, SE = 0.029, z = 13.922, p < 0.001) and co-occurrence in phrase (β = 0.063, SE = 0.028, 
z = − 2.229, p = 0.022), where in both cases the more two objects co-occurred, the more they were judged to be 
similar. However, the anchored co-occurrence between two objects was not significantly reflected in pairwise 

Figure 2.   One half of a symmetric Representational Dissimilarity Matrix (RDM) showing the organization of 
individual object pairs based on the a priori hierarchical organization. Gray and black portions of the triangle 
represent pairs of objects assigned to the same scene category, while black portions represent pairs of objects 
assigned to the same phrase within the scene. Scene category labels and composition of the phrases are also 
reported, the letter (A) indicates an anchor object, the letter (L) indicates local objects. The remaining white 
portion of the triangle represents pairs of objects that are assigned to different scenes. This order of objects is 
maintained in the RDMs and used to represent different levels of the hierarchical models (see Fig. 3).
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similarity ratings (β = 0.005, SE = 0.028, z = 0.165, p = 0.869). Overall, these results already show a hierarchical 
organization of mental representations not only on the scene level, but also at the phrasal and object type level.

Regarding the covariate measures (see Supplementary Material 2), we found main effects of the early layer 
of AlexNet DNN (β = − 0.133, SE = 0.025, z = − 5.317, p < 0.001), with pairs that looked more similar in terms of 
low-level visual features being considered less similar at behavioural level, while the main effect of late layer of 
AlexNet (β = 0.126, SE = 0.031, z = 4.078, p < 0.001) showed that object pairs that looked more similar in terms 
of high-level visual features were also estimated to be more similar by our participants. Finally, we detected a 
main effect of word embeddings (β = 0.338, SE = 0.025, z = 13.363, p < 0.001), with object pairs that have stronger 
similarity in terms of distributional semantics features being considered more similar. These results show that 
distinction emerging from both complex visual features (AlexNet late layer) and word meaning (Word embed-
dings) are important factor in determining the mental representation supporting behaviour, while contrary to 
that, similarity based on low-level visual features (AlexNet early layer) acts as a confound making more similar 
objects less distinguishable.

In terms of interaction between stimulus modality and our predictors, the model showed a significant effect 
in scene condition (a priori predictor, β = − 0.280, SE = 0.050, z = − 5.601, p < 0.001), and in co-occurrence in 
scene (data-driven predictor, β = − 0.124, SE = 0.019, z = − 6.361, p < 0.001), where in both cases the effect of the 
hierarchical predictor was found to be stronger in ratings of object pictures than ratings of words. Object rat-
ings had also stronger effect of the late layer of AlexNet than word ratings (β = − 0.112, SE = 0.022, z = − 5.157, 
p < 0.001), while word ratings had a stronger effect of word length than object ratings (β = 0.082, SE = 0.028, 
z = 2.977, p = 0.003; for more details, see Supplementary Material  2). This is expected since both predictors are 
estimated based on their preferential stimulus modalities (AlexNet activation with object pictures; Word length 
with words), and signifies that these dimensions are more strongly related to modality specific representations 
compared to the hierarchical predictors.

Figure 3.   Representational (Dis)similarity matrices (RDMs) for the a priori hierarchical predictors (A–C) and 
for the data-driven hierarchical predictors (D–F). RDMs are symmetric matrices where entries on rows and 
columns are the objects stimuli, and cells represent pairwise similarity along a specific dimension. In (A–C), 
yellow represents pairs of objects that are assigned to the same scene, phrase or type (maximal similarity), while 
blue represents pairs that are assigned to different scenes, phrases or types (minimal similarity). In (D), the 
log10(counts + 1) of co-occurrence in scene is normalized to span between 0 (blue, few counts) to 1 (yellow, 
many counts). In (E) and (F), the colors represent proportion of counts to the total co-occurrence counts of each 
pair.
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For more details regarding how object size, manipulability and moveability interact with different object types 
(anchor and local objects) see Supplementary Materials 3 and 4.

Discussion
Objects in visual scenes are arranged in a structured way. These structural regularities are learnt and stored in 
long-term memory (“scene grammar”) to make meaningful predictions and efficiently perceive and interact with 
the environment2. In this study, we wanted to explore whether scene grammar is organized in a hierarchical 
way. We hypothesized that at the top of the hierarchy, objects are grouped together according to whether they 
appear in the same context (scene level), followed by objects that spatially cluster within that context (phrase 
level), which again consist of anchor objects that hold strong predictions about identity and position of other 
local objects within a cluster8. Moreover, we wanted to understand if this organization emerges differently in one 
modality than the other (e.g., object pictures vs. written words). For this purpose, we adopted the odd-one-out 
task as introduced by Hebart and colleagues32, a method that has been used to study perceptual and conceptual 
dimensions underlying mental representation of objects.

We have shown that when participants are asked to judge the similarity between pairs of objects, the underly-
ing mental representations seem to be organized according to our proposed hierarchy. That is, pairs of objects 
that were assigned a priori to the same scene, to the same phrase, or to the same object type, were judged as more 
similar than pairs of different scenes, phrases and types. This finding largely held up even when the hierarchy 
was estimated from statistical distributions of objects in real-world images28. Besides, we showed that these 
results were overall consistent and stable across modalities, with only the scene level predictors showing an even 
stronger effect for object pictures than words. Finally, we highlighted how the a priori division of objects between 
anchors and local objects is strongly based on object size and moveability, as previously proposed and showed26.

To our knowledge, this is the first attempt to explore whether the hierarchical organization of objects in scenes 
is incorporated into our mental representations. Previous research either focused on effects of scene context 
on object processing (e.g.2; for a review see16) or on the relationship between anchors and related local objects 
(e.g.26,27). Here, we aimed at bridging the gap between these two levels considering the role of meaningful clusters 
of objects (“phrase” level) as an intermediate structure within the hierarchy.

Employing two different sources of estimation of the hierarchy allowed us to draw some interesting conclu-
sions. The weak correlations between a priori and data-driven hierarchy predictors and the absence of multicol-
linearity (see Supplementary Material 1) show that, despite the same direction of the effects, the two models 
of hierarchy are only partly overlapping. We can only speculate about the reasons of these differences, which 
might also speak to the limitations of both types of hierarchy estimations: on the one hand, previous research has 

Figure 4.   Representational (dis)similarity matrices (RDMs) for the ratings collected in Exp 1 (object pictures, 
A) and Exp 2 (words, B). Cells represent pairwise similarity ratings averaged across all the triplets where the pair 
was present. Every pair was presented in a triplet with all the other remaining objects (“context object”), and it 
was judged either as similar (1) or dissimilar (0), so that in the RDMs pairwise similarity spans from 0 (never 
judged as similar) to 1 (always judged as similar).
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shown that subjective experience of how frequently objects in the world occur is overestimated36, which might 
have resulted in differences between a priori estimations and measures taken from the distribution of objects in 
labeled image databases; on the other hand, it is important to note that any given dataset of annotated images 
only represents a rough (and often biased) approximation of the real-world distribution of objects. Compared 
to word frequency measures based on corpora of at least 20 million words37, fully annotated image datasets 
are much smaller in size (in our case, circa 45,000 annotations). The two hierarchical organizations (a priori 
vs. data-driven) might also reflect object processing in two different ways: for instance, the a priori hierarchy 
is based on discrete, dichotomic divisions of objects dependent on whether they appear in the same context 
or not, and therefore might be used when a task requires the processing of rough contextual information; on 
the other hand, the continuous co-occurrence measures from the data-driven approach might offer a more 
fine-grained representation of object-to-object contextual information when necessary. Using distributional 
properties of objects in scenes as calculated from annotated datasets (similar to research on language) is becom-
ing increasingly popular and provides interesting insights on learning statistical regularities in both vision an 
in language22,38, offering an alternative to traditionally employed categorical divisions based on experimenters’ 
intuition or crowd-sourced ratings.

The measures that can be extracted from this type of datasets can offer even more fine-grained information 
than what we highlighted here: for example Boettcher et al.26 measured that the relationship between anchor and 
local objects has strong regularities on the vertical axis, that is, it is possible to predict the position of a certain 
local object from a certain anchor object in terms of “is above” or “is below”, but not as much on the horizontal 
axis (“is left of ” or “is right of ”), similar to linguistic grammar where in most languages the components of a 
phrase (e.g., subject and object) have predictable positions with respect to each other. This seems to match the 
intuition that the structure of a room is much more vertically organized: objects typically found on the lower part 
of a room tend to differ from objects typically found in the top part of the room (e.g., shoes usually are found on 
the floor, while paintings are hanging up on the wall), while on the horizontal axis there is much more variability 
(e.g., the towels can be found either left or right of the shower. This vertical organization of the environment 
seems to indeed also be reflected in the neural representation of scenes39.

The significant results of both types of hierarchy predictors suggest that, despite some of their limitations, 
these are capturing aspects of the visual world that seem to be incorporated in our mental representations of 
objects. This is particularly interesting as these layered representations seem to be triggered by simply viewing 
isolated objects or words. It is important to point out that—similar to Hebart and colleagues32—no explicit defini-
tion of similarity or specific instructions on how to judge the (dis)similarity of the three presented objects/words 

Figure 5.   Model-estimated effects of the hierarchy predictors on pairwise similarity ratings for object pictures 
and words. Colours of violins and points reflect the values of pairs for the given predictor and match the ones in 
the RDMs showed above. Stimulus modality is indicated by x-axis position (left = objects, right = words). Points 
and violins reflect estimated similarity for each pair of objects averaged across all the different contexts (i.e., the 
third object a triplet) in which they were presented. 95% confidence interval are represented by error bars in the 
violins (point is the mean), and by the shaded area around lines for continuous predictors.
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were given to the participants when performing the “odd-one-out” triplet task. The aim was to collect similarity 
judgements that are not biased towards specific dimensions while allowing different dimensions to emerge in 
different contexts. For example, “cat” and “elephant” might be similar in a triplet with “table”, based on animacy, 
but “cat” and “elephant” might be dissimilar in a triplet containing “dog”, where the similarity might be based on 
whether the animals are pets or not. However, it has been shown that—using the same triplet task with different 
similarity instructions—it is possible to measure the flexibility of mental representations in highlighting one 
dimension more than others according to task demands40. We believe this could also apply to the hierarchical 
organization of objects in scenes, whose strength in shaping mental representation might be increased by tasks 
that require interactions with objects (e.g., judging similarity based on function) and reduced by tasks that rely 
less on object-to-object contextual relations (e.g., judging similarity based on visual features). Future investiga-
tions directly comparing different “odd-one-out” triplet tasks might shed more light on these aspects.

A question that remains open is whether this hierarchical organization is present in every type of scenes. 
In the present study, we have employed only an organization that relates to indoor man-made environments, 
because we believe that here the hierarchical structure is optimized to efficiently perform everyday actions like 
brushing teeth or cooking. Outdoor scenes in general, and natural scenes in particular, might show less of a 
hierarchical structure. First of all, in the way they are experimentally investigated, they have much bigger scale 
than indoor environments. This has consequences on navigational and action patterns, which differs from the 
ones of smaller scale indoor scenes. Second, natural scenes, in which man-made objects are rare or even absent, 
lack object arrangements that reflect the need for efficient human-object interaction. That said, nature of course 
has its own “grammar” as well (e.g., the way that rivers flow or rocks fall into place), and it might be worth inves-
tigating the hierarchical structure of natural scenes and how these might be mirrored in mental representations.

While we did not measure brain responses in this study, it is still worth discussing how such hierarchical 
organization could be implemented in the brain. For instance, the hierarchical organization of objects in scenes 
might be represented in the parahippocampal cortex (PHC), in the anterior part of the ventral-temporal cortex. 
Within the PHC lies the parahippocampal place area (PPA), a scene-selective region which shows stronger acti-
vation for scene stimuli rather than single objects41. Subsequent investigations have suggested that PPA/PHC 
might represent spatial and non-spatial context in a more general way9,42, and not just based on visual scenes. 
This is in line with recent findings that viewing single isolated objects evoked a complex representation of objects’ 
co-occurrence in the anterior portion of PPA22. Here also lies the perirhinal cortex, which has been proposed 
to represent semantic information for individual objects43, and is the medial portion of the Anterior Temporal 
Lobe (ATL), which has been proposed to be the primary hub of the semantic network44.

Finally, our results—according to which hierarchical predictors show significant main effects and minor dif-
ferences between modalities—suggest that scene grammar might act on domain-general representations. That 
is, the hierarchical structure of our visual world might be incorporated into semantic memory representations of 
objects which are accessed when an object’s meaning is retrieved from processing input from different modali-
ties, here either pictures or words. Some visual and hierarchical features are not completely independent, but 
we took great care to not have extreme levels of multicollinearity invalidate the interpretation of our results (see 
Supplementary Materials for correlation plots and VIF estimates). We therefore want to propose that a scene’s 
hierarchical structure is incorporated into the abstract semantic representations of both objects and words that 
can be used to flexibly form predictions when encountering new visual environments or written text. We believe 
that with this paper we were able to demonstrate that using several visual and linguistic covariates, as well as 
measuring effects on both object pictures and words, we can now provide some first evidence that the hierarchical 
predictors are (1) independent of the visual and linguistic dimensions measured here and (2) are independent 
of the specific modality of stimulus presentation.

To conclude, in the current study we provided first evidence that abstract mental representations of objects 
in scenes might be hierarchically organized, incorporating not only scene semantic information at the highest 
level, but also a more fine-grained, mid-level phrasal structure, as well as distinctions of object types. We there-
fore believe that these phrasal substructures of scenes play an important role in the organization of our mental 
representations of the world and therefore should be considered when studying visual cognition.

Materials and methods
Participants.  Eighty-six participants took part in our study. Half of them took part in Experiment 1 (age: 
M = 24.72 years, SD = 5.33 years, range = 18–40 years; gender: F = 31, M = 12), the other half took part in Experi-
ment 2 (age: M = 22.60 years, SD = 5.18 years, range = 19–50 years, 1 person did not report age; gender: F = 28, 
M = 15). The number of participants in each experiment (N = 43) was determined as the optimal ratio between 
the total number of unique trials and an optimal number of trials to present to a single participant. All partici-
pants reported that they had normal or corrected to normal vision and had no history of psychiatric or neuro-
logical disorders. Participants of Experiment 2 also reported to be German native speakers. Additionally, a third 
group of participants (N = 20), who did not take part in either Experiment 1 and Experiment 2, participated in 
a rating experiment to judge some features of objects (age: M = 22.9 years, SD = 4.00 years, range = 19–35 years; 
gender = 12 F, 7 M and 1 NB). These participants matched the same criteria of participants in Experiment 1. 
No minors participated in the study. All participants gave their informed consent and received course credits 
or monetary reimbursement for their participation. The Ethics Committee of the Goethe University Frankfurt 
approved all experimental procedures (approval # 2014-106), that have been performed in accordance with the 
Declaration of Helsinki.

Stimuli.  Forty-five everyday indoor object concepts were selected for the study (see section below for more 
details). For Experiment 1, pictures of the objects in isolation were downloaded from copyright-free internet 
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databases (e.g., https://​pnghu​nter.​com/, http://​pngimg.​com/, https://​www.​clean​png.​com/), pasted on a white 
background, grey-scaled to rule out influence of color, and resized to 392 × 392 pixels (jpg format). For Experi-
ment 2, we used the German words associated with the objects, presenting them in bold black Arial font, with 
the first letter in uppercase and the other letters in lowercase, as by correct German spelling for nouns.

Measures of scene hierarchy.  To predict similarity judgments as a function of scene hierarchy, we esti-
mated two sets of scene hierarchy measures.
•	  A priori hierarchy measures: these measures were based on intuition of experimenters as well as common 

sense; therefore, we selected our 45 stimuli as typically belonging to one of 5 different indoor scenes (bath-
room, bedroom, kitchen, living room and home office). For every scene, we divided objects in 3 phrases; 
within every phrase, 1 object was identified as anchor object, and the other 2 as local objects (Figs. 1B and 2).

•	 Data-driven hierarchy measures: these measures were based on a dataset of real-world scene images con-
taining pixel-wise segmentation and annotation of objects28. The dataset contained 3499 unique coloured 
images, grouped into 16 scene categories (both indoor and outdoor, natural and man-made, and including 
the 5 categories considered in the a priori assignment), with more than 48,000 annotations grouped into 
617 different object categories (including the 45 objects selected for the study). Annotations were done by 4 
different workers using the LabelMe tool29 and were carefully cleaned of misspelling and synonyms (Fig. 1B).

Following the procedure used in Boettcher et al.26, we first pre-processed the annotation and segmentation 
data in MATLAB (MathWorks, 2018), extracting identity, coordinates and centroids of each object in the 2D 
space of pixels of each image. Further analysis were carried on in R (version 3.6.3, R Core Team, 2020). Second, 
we discarded objects that have a more structural function (e.g., walls, windows, ceiling, doors, pipes) rather 
than being relevant for the object-to-object relationship we were interested in investigating, leaving us with 567 
unique object categories. Given the structure of the data, we could compute how many times two objects co-occur 
in the same image, which is the data-driven counterpart of the scene level of the hierarchy. Then, representing the 
objects in an image through their centroids and the image area as a 2D space, we ran a clustering algorithm to 
find the optimal spatial grouping of objects in every scene: the algorithm was based on the partitioning around 
medoids clustering method and estimated the number of clusters using average silhouette width (pamk function 
from R package “fpc”45). We identified the resulting clusters of objects as phrases, and within every cluster, we 
identified the object with the largest area as anchor object, while the other objects in each cluster were considered 
local objects.

Visual and linguistic covariates.  Additionally, to ensure that effects of the scene hierarchy did not emerge 
from a confound of lower-level information, we estimated several measures of visual features (for object pictures 
in Experiment 1) and linguistic features (for words in Experiment 2):
•	 Visual measures (for pictures): we estimated visual features of our object images feeding them to a pre-trained 

Deep Neural Network (DNN), a state-of-the-art computer vision algorithm that is trained to perform object 
categorization at human-like level. In our case, we used the popular AlexNet, trained on the ImageNet 
dataset46. AlexNet, like most DNNs, is based on many sequential layers of processing units, which extract 
and transform features from the previous layer. The first layer extracts features from the input layer, which 
is formed by the pixel values of an image; then the information is transformed in an increasingly complex 
way through the many intermediate layers until it reaches the final output layer, which assigns the image to 
one category (e.g., “cat”). We estimated unit activations for our object images in 3 different layers of AlexNet: 
convolutional layer 1 (conv1, “early layer”), which processes low-level visual features (e.g., edges, brightness); 
convolutional layer 4 (conv4, “mid layer”), which process mid-level visual features (e.g., shape); and the fully 
connected layer 7 (fc7, “late layer”), which processes high-level visual features (complex configurations, like 
faces, handles, etc.).

•	 Orthographic measures (for words): we estimated orthography of our word stimuli using 2 measures: word 
length, as the number of letters in a word; orthographic distance from neighboring words (i.e., words that 
differ for a letter from a target word), computed using the OLD20 measure47.

•	 Distributional semantic measures (for words): distributional semantic is a model of word meaning based on 
the idea that words that appear in similar linguistic contexts (i.e., they have a similar distribution in text) 
have similar meaning (for a review48). This approach has been widely used in Natural Language Processing 
(NLP) to create algorithms that use distributional measures from text corpora to build representations of 
word meaning and perform operations on it. One common way of representing word meaning in NLP is 
through Word embeddings which are multi-dimensional vectors. Words whose embeddings are closer in this 
vector space have also similar meanings. For our set of word stimuli, we used the embeddings trained on 
German Wikipedia using fastText and the skip-gram model with default parameters49.

Object features.  To better understand what features underly the division of objects between anchors and 
local objects, we have collected ratings about three dimensions that have been discussed in connection to the 
status of anchor and local objects: real-world size (how big an object is), moveability (how easily an object is 
moved in space) and manipulability (how much the position of an object or of one of its part or its configuration 
is changed during the interaction with it).

Apparatus and procedure.  Apparatus and procedure were mostly identical across Experiments 1 and 2. 
Where there were differences, those are reported explicitly. For the study, we adapted an “odd-one-out” triplet task 
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introduced by Hebart and colleagues, which elegantly is used to collect pairwise similarity judgments of object 
pictures32. First, we generated all the possible combinations of triplets of stimuli (45!/(3! × (45 − 3)!) = 14,190 
unique triplets). We then divided the triplets randomly into 43 groups of 330 triplets, to have a practical number 
of trials and participants. Every participant, therefore, performed the task on a different subset of triplets.

Experiments were programmed in Python using PsychoPy (version 2020.2.4, Builder GUI50) and administered 
online through the hosting platform Pavlovia (https://​pavlo​via.​org/). Participants were asked to start the experi-
ment only when they had between 30 min/1 h of free time and only when they could carry on the procedure 
with calm and in an undisturbed environment. Instructions told participants they would have seen triplets of 
stimuli and their task would have been to choose the “odd-one-out” stimulus, i.e., the one they considered the 
least similar to the other two. No explicit definition of similarity was given to participants, as in the original study. 
This is in line with the purpose played by the “odd-one-out” triplet task: similarity between a pair of objects is 
evaluated across multiple trials (i.e., triplets), in which the context keeps varying (i.e., the third object of the 
triplet). This way, many different dimensions are allowed to emerge and be prioritized to judge the pair similarity, 
giving back a more complex picture of object representations32.

In our study, triplets were presented on a white background screen, with one stimulus on the left, one stimu-
lus in the center and one stimulus on the right (the position of every stimulus in the triplet was randomized 
within every triplet before the presentation; Fig. 1C). Experiments were programmed so that stimulus size 
were normalized based on screen size, so that every participant saw stimuli occupying the same proportion of 
screen: each picture spanned about 1/4 of width and height size, while each word spanned about 1/10 of height 
size and varying width size according to word length. To choose the odd-one-out stimulus, participants had to 
press the corresponding arrow (left arrow for the stimulus on the left, down arrow for the stimulus in the center, 
right arrow for the stimulus on the right). Once they pressed the key, a 500 ms black fixation crossed appeared 
in the center of the screen and then the next triplet was presented. Trials were divided into 6 blocks, between 
which participants could take a break. Participants were allowed to take as much time as they wanted to make 
their “odd-one-out” decision, and if they could not recognize one of the stimuli, they were asked to make their 
decision based on what they thought the stimuli were.

In the object features rating experiment, participants performed the ratings of moveability, manipulability, 
and real-world size in three different blocks (in this order). Within every block, participants saw the pictures of 
the object stimuli from Experiment 1 one at the time (in randomized order), together with the rating question 
(above the picture) and a 6-point likert scale (below the picture). Before the block, they were presented with a 
definition of the investigated dimension, and were asked to press a number between 1 to 6 corresponding to 
their judgments.

Analysis.  To analyze how measures of scene hierarchy predict pairwise similarity judgments, we combined 
two main analytical approaches: Representational Similarity Analysis (RSA33) and Generalized Linear Mixed-
effects Models (GLMMs34). RSA is a tool that allows comparison of different sources of data that have different 
dimensionalities (brain data, behavioral data, computational models, stimulus features). To do so, it requires 
the creation of Representational (Dis)similarity Matrices (RDMs), which are symmetric matrices where column 
and row entries are typically corresponding to the different stimuli (Figs. 2, 3). Every cell in an RDM contains a 
measure of (dis)similarity for that pair of stimuli. Once the different sources of data are represented in the same 
RDM format, it is possible to compare them and estimate how similar two RDMs are, i.e., how the structure of 
pairwise similarity in one source (e.g., behavior) is predicted by the structure of pairwise similarity in another 
source (e.g., a computational model).

In our study, we followed this approach to compute pairwise similarities from the “odd-one-out” triplet 
behavioral task, as well as from the measures of hierarchy and covariates introduced above.

•	 Behavioral similarity: we estimated behavioral similarity between pairs of stimuli in a dichotomic way: similar 
(dummy coded as 1) vs dissimilar (dummy coded as 0). This estimate was assigned as a result of the “odd-
one-out” choice on every triplet. Given a triplet (e.g., A, B and C), once an “odd-one” stimulus is selected 
(e.g., C), the similarity between the unselected stimuli results to be maximal (Sim(A,B)  = 1 → “similar”), 
while the similarity between the “odd-one” stimulus and one of the unselected stimuli results to be minimal 
(Sim(C,A) = 0 → “dissimilar”; Sim(C,B) = 0 →  “dissimilar”; Fig. 1C).

•	  A priori hierarchy similarity: we estimated pairwise similarity based on the hierarchy status assigned a priori. 
This results in 3 categorical predictors. First, we considered scene condition, with dichotomic categorization: 
pairs from the same scene (dummy coded as 1) vs pairs from different scene (dummy coded as 0). Then, we 
considered phrase condition, with three groups: pairs from the same phrase (1) vs pairs from different phrases 
within the same scene (0.5) vs pairs from different phrases in different scenes (0). Finally, we considered 
object type condition, with two categories: pairs of objects of the same type (1) vs pairs of objects of different 
type (0), where object type refers to the object being either an anchor object or a local object.

•	 Data-driven hierarchy similarity: we estimated pairwise similarity based on the hierarchical status emerging 
from the clustering procedure on the labelled image dataset. This results in 3 continuous predictors. First, 
we estimated a measure of co-occurrence of pairs in a scene, as the number of times a pair appears in the 
same image; in the analysis we used log10 (counts + 1), so that we had a more uniform distribution along 
this dimension and avoid having -Infinite values. Then, we estimated a measure of co-occurrence of pairs in 
a phrase, as the proportion of co-occurrence counts where a pair not only appears in the same image but 
also in the same cluster. Finally, we estimated a measure of anchored co-occurrence, as the proportion of co-
occurrence counts where one object of a pair is “anchored” to the other.

https://pavlovia.org/
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•	 Covariates: for the visual, orthographic, and distributional semantic measures, similarity was estimated in 
different ways. For multidimensional measures (i.e., the 3 AlexNet layers and the Word embedding), similarity 
was estimated by computing the product–moment correlation coefficient between pairs of vectors (e.g., the 
embedding vector for “pan” and the embedding vector for “pot”); for mono-dimensional measures (i.e., word 
length and orthographic distance), similarity was computed as the absolute value of the difference between 
the two values of each pair (e.g., the absolute value of the difference between word length for “pot” and word 
length for “pan”).

GLMMs are an extension of Linear Mixed-effects Models (LMMs51) for responses/dependent variables that 
have a non-gaussian distribution (in our case, the bimodal dichotomic behavioral similarity). The main advantage 
of (G)LMMs over simple regression models and ANOVAs is that one can consider each trial from each partici-
pant simultaneously, without the need for aggregation or separate estimation of the effects across participants 
and item (i.e., crossed random effects of items and participants52). Therefore, the response is estimated based 
on several predictors (fixed factors) and considering grouping factors that have common portion of variance 
(random factors). Using R syntax, our model had this structure:

In the formula, on the left of the tilde (~), we have the response, i.e., the dichotomic behavioral similarity 
from the triplet task; on the right of the tilde, we have the predictors, i.e., the categorical and continuous pair 
similarity from the a priori and data-driven hierarchical organization, as well as pair similarity for covariate 
measures; finally, we have the random factors, i.e., participant, pair, and context object (the third object in the 
triplet). We fitted the statistical models via maximum likelihood estimation, and continuous predictors were 
scaled, as this typically improves model fit. For categorical predictors, we planned specific contrasts between 
conditions: for scene condition, the contrast was set to same scene − different scenes; for object type condition, 
the contrast was set to same object type − different object types; for phrase condition, one contrast was set to same 
phrase − different phrases of the same scene, while the other contrast was set to (same phrase and different phrases 
of the same scene) − different phrases of different scenes. Since this last contrast is identical to same scene − different 
scenes, and since the scene similarity and phrase similarity predictors are highly correlated, we removed from the 
model the scene condition predictor and incorporate its contrast in the phrase similarity predictor. This way, we 
removed redundancies and reduced multi-collinearity to an acceptable level. Besides, every measure was put in 
interaction with the categorical predictor stimulus modality, which compares the effect of the measures between 
words and objects pictures. Finally, for random effects, we included only an intercept term, so that we followed 
the recommendations of Bates et al. about parsimony in random effect structure53.

RSA was previously used in combination with general linear model (e.g.39,54), modeling response RDMs of 
different participants (from brain or behaviour) as a linear combination of multiple predictors RDMs (from 
stimulus features or computational models) and going beyond the simple 1-to-1 correlation between response 
and predictor RDMs originally presented in RSA. In our approach we went one step further: since the similarity 
of each pair is estimated multiple times in different context (the third object of the triplet), and since each context 
object appeared multiple times with different pairs, we considered these additional sources of random variance 
(pairs and context objects) exploiting the flexibility of GLMMs.

Analysis was performed using R (version 3.6.3, R Core Team, 2020).

Data availability
Data and scripts are available at the following link: https://​osf.​io/​tx4m5/.
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